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Improved stability bound for steady-state flow in a car-following model of road traffic
on a circular route

H. J. C. Huijberts*
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~Received 4 November 2001; published 3 April 2002!

This note revisits a car-following model of road traffic on a circular route that was studied in recent
literature, and improves a stability result for steady-state flows that was obtained in this literature. It will be
shown through a counter example that the stability bound obtained in the literature only gives a sufficient
condition for stability, which only becomes necessary when the number of cars on the route tends to infinity.
We will further present a result that gives a necessary and sufficient condition for stability.
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I. INTRODUCTION

The objective of this paper is to revisit a car-followin
model of road traffic on a circular route that was studied
@1,3#, and to improve a stability result that was obtained
these papers. Motivated by a recent paper by the author~@2#!,
it will be shown through a counter example that the stabi
bound obtained in@1,3# only gives a sufficient condition fo
stability, which only becomes necessary when the numbe
cars on the route tends to infinity. We will further presen
result that gives a necessary and sufficient condition for
bility.

We will first introduce the car-following model that wa
studied in Refs.@1#, @3#. In this model, a circular road o
length L is considered, on whichN cars are present. It is
assumed that each of the cars has a legal velocity functioV,
which depends on the distance to the car just ahead.
further assumed that each driver responds to a stimulus f
the vehicle ahead in such a way that he can maintain
legal safe velocityV. The functionV typically has the prop-
erties thatV(0)50, and that it is bounded and strictly in
creasing. Denoting byxj the position of the j th car (j
51,...,N), this then leads to a model of the form

ẍ j52a@ ẋ j2V~xj 112xj !#

~ j 51,...,N; xN11ªx11L2xN!, ~1!

wherea.0 is a constant representing the driver’s sensitiv
which is assumed to be the same for all drivers.

The model~1! possesses a steady-state flow~or a synchro-
nous motion in the terminology of Ref.@2#! in which all cars
drive at the same velocity with a constant spacing betw
the cars. This steady-state flow is of the form

x̄ j~ t !5b j1ct ~ j 51,...,N!, ~2!

with

b5
L

N
, c5V~b!, ~3!
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where b is the constant spacing between cars andc is the
constant velocity of the cars.

Now define

bªaV8~b! ~4!

and

p~z!ª~z21az1b!N2bN. ~5!

One then has that the steady-state flow is locally expon
tially stable if and only if all nonzero roots ofp(z) are in
C2

ª$zPCuRe(z),0% ~cf. @3,2#!. It is then claimed in Refs.
@1#, @3# that this is the case if and only ifb,a2/2, which is
equivalent to

V8~b!,
a

2
. ~6!

However, this condition is not necessary, as the follow
counter example shows.

Example 1.1. Consider the case whereN54, a52,
V8(b)51.5. Clearly, we then have that Eq.~6! does not hold.
However, we have thatb53 and

p~z!5~z212z13!4234. ~7!

Numerical calculation of the roots ofp(z) gives roots
at 0, 22, 21.896061.6741i , 20.104061.6741i , 21.0000
62.2361i , which are clearly all inC2. This shows that Eq.
~6! is not a necessary condition for local exponential stabi
of steady-state flows.

In the following section, we will present conditions th
are indeed necessary and sufficient conditions for local
ponential stability of steady-state flows.

II. AN IMPROVED STABILITY BOUND

Define the polynomialr (s) by

r ~s!ª~s1b!N2bN. ~8!
©2002 The American Physical Society03-1
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Note that we then have thatp(z)5r @z(z1a)#. The follow-
ing result is our starting point in deriving necessary and s
ficient conditions for local exponential stability of stead
state flows.

Lemma 2.1. All nonzero roots ofp(z) are in C2 if and
only if all nonzero rootss of r (s) satisfy

Im~s!2,2a2 Re~s!. ~9!

Proof. Sincep(z)5r @z(z1a)#, we have that all nonzero
roots ofp(z) are inC2 if and only if for all nonzero rootss
of r (s) we have that the solutions ofz(z1a)5s are inC2.
The latter equality can be rewritten as

S z1
a

2D 2

5s1
a2

4
5..r exp~ iu!, ~10!

which gives that

z52
a

2
6Ar expS iu

2 D .

This then gives that we should have that

0.2
a

2
1Ar cos~ 1

2 u!52
a

2
1F r S 11cosu

2 D G1/2

,

which is equivalent to

r ~11cosu!,
a2

2
. ~11!

Write s5x1 iy . Then it follows from Eq. ~10! that r
5A(x1a2/4)1y2 and r cosu5x1a2/4. Thus, Eq.~11! is
equivalent to

F S x1
a2

4 D1y2G1/2

,
a2

2
2S x1

a2

4 D . ~12!

Squaring both sides of this equality then gives that Eq.~12!
is equivalent to

y2,2a2x, ~13!

which is exactly the inequality~9!. This establishes ou
claim.
Using Lemma 2.1, we obtain the following result for loc
exponential stability of steady-state flows.

Theorem 2.2. Steady-state flows are locally exponentia
stable if and only if

F11cosS 2p

N D GV8~b!,a. ~14!

Proof. From Eq.~8! it follows that the nonzero roots o
r (s) are given by
04710
f- sk52b1b expS 2kp i

N D ~k51,...,N21!.

Now assume that Eq.~14! holds, and consider a nonzero ro
sk (kP$1,...,N21%) of r (s). We then have that

Re~s!52b1b cosS 2kp

N D , Im~s!5b sinS 2kp

N D ,

which gives that

Im~s!21a2 Re~s!5b2 sin2S 2kp

N D2a2bF12cosS 2kp

N D G
5bF12cosS 2kp

N D G H bF11cosS 2kp

N D G
2a2J .

This gives that Im(s)21a2 Re(s),0 if and only if

a2.bF11cosS 2kp

N D G ~k51,...,N21!. ~15!

Now assume that Eq.~15! holds fork51. Then we have for
k52,...,N21:

bF11cosS 2kp

N D G2a2,bH F11cosS 2kp

N D G
2F11cosS 2p

N D G J 52bFcosS 2p

N D2cosS 2kp

N D G
522b sinS ~k11!p

N D sinS ~k21!p

N D<0,

where the last inequality follows from the fact that fork
52,...,N21 we have that

0,
p

N
<

~k21!p

N
,
~k11!p

N
<p.

Thus, we have that Eq.~15! holds for allkP$1,...,N21% if
and only if it holds fork51. It is now straightforwardly
checked that Eq.~15! for k51 is equivalent to Eq.~14!,
which establishes our claim.

Remark 2.3. Note that forN→`, the left hand side of Eq
~14! tends to 2V8(b). This shows that the condition for sta
bility given in Refs.@1#, @3# only is a necessary condition fo
N→`. Note further that forN52 the right hand side of Eq
~14! equals zero. Thus, forN52 the steady-state flow is
always locally exponentially stable.

III. CONCLUSIONS

This paper has given a generalized stability criterion
steady-state flows of road traffic on a circular route. T
criterion generalizes the well-known result for an infini
3-2
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number of vehicles presented in Refs.@1#, @3# to finite num-
bers, and shows that finite-size effect tend to stabilize tra

It is to be noted that the circular route infrastructure is n
very relevant for real~motorway! traffic. However, in
ug

04710
c.
t

real motorway traffic models it is often used as a test s
nario. Moreover, two recent papers@2,4# have shown that the
circular route infrastructureis of relevance when one consid
ers traffic on bus routes.
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