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Improved stability bound for steady-state flow in a car-following model of road traffic
on a circular route
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This note revisits a car-following model of road traffic on a circular route that was studied in recent
literature, and improves a stability result for steady-state flows that was obtained in this literature. It will be
shown through a counter example that the stability bound obtained in the literature only gives a sufficient
condition for stability, which only becomes necessary when the number of cars on the route tends to infinity.
We will further present a result that gives a necessary and sufficient condition for stability.
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[. INTRODUCTION whereb is the constant spacing between cars and the
constant velocity of the cars.
The objective of this paper is to revisit a car-following  Now define
model of road traffic on a circular route that was studied in
[1,3], and to improve a stability result that was obtained in B=aV'(b) 7\
these papers. Motivated by a recent paper by the a(pr
it will be shown through a counter example that the stabilityand
bound obtained if1,3] only gives a sufficient condition for
stability, which only becomes necessary when the number of

cars on the route tends to infinity. We will further present a p(2):=(Z*+az+ )N - p". )
result that gives a necessary and sufficient condition for sta-
bility. One then has that the steady-state flow is locally exponen-

We will first introduce the car-following model that was tially stable if and only if all nonzero roots qi(z) are in
studied in Refs[1], [3]. In this model, a circular road of C™:={ze (|Re@<O0} (cf. [3,2]). It is then claimed in Refs.
length L is considered, on whictN cars are present. It is [1], [3] that this is the case if and only #<a?/2, which is
assumed that each of the cars has a legal velocity funetjion equivalent to
which depends on the distance to the car just ahead. It is
further assumed that each driver responds to a stimulus from a
the vehicle ahead in such a way that he can maintain the V'(b)<s5. (6)
legal safe velocity/. The functionV typically has the prop- 2
erties thatV(0)=0, and that it is bounded and strictly in- ) o .
creasing. Denoting by; the position of thejth car However, this condition is not necessary, as the following
=1,...N), this then leads to a model of the form counter example shows.

Example 1.1 Consider the case wherBl=4, a=2,
%= —al[¥— V(X 11~ )] V'(b)=1.5. Clearly, we tfen have that E&) does not hold.
However, we have thg8=3 and

(1=1,..N; Xni1:=X;+L—xy), (1)

— (2 4_ a4
wherea>0 is a constant representing the driver’s sensitivity, p(2)=(z"+22+3)"-3" )

which is assumed to be the same for all drivers. ) ] )

The model1) possesses a steady-state flmwa synchro- Numerical calculation of the roots ofp(z) gives roots
nous motion in the terminology of RgR]) in which all cars ~ at 0, =2, —1.8960+1.6741, —0.1040+1.6741, —1.0000
drive at the same velocity with a constant spacing betweerF 2.2361, which are clearly all inC™. This shows that Eq.

the cars. This steady-state flow is of the form (6) is not a necessary condition for local exponential stability
of steady-state flows.
X(t)=bj+ct (j=1,..N), ) In the following section, we will present conditions that

. are indeed necessary and sufficient conditions for local ex-

with ponential stability of steady-state flows.
b= E c=V(b) 3) [l. AN IMPROVED STABILITY BOUND
N Define the polynomiat (s) by
*Email address: h.j.c.huijpberts@gmul.ac.uk r(s):=(s+B)N—pN. 8
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Note that we then have tha(z) =r[z(z+a)]. The follow-

ing result is our starting point in deriving necessary and suf- Sk=—pB+pB exr{
ficient conditions for local exponential stability of steady-

state flows. Now assume that E¢14) holds, and consider a nonzero root

Lemma 2.1All nonzero roots ofp(z) are inC™ if and g, (ke{1,...N—1}) of r(s). We then have that
only if all nonzero rootss of r(s) satisfy
2k
N L

2k’7Ti> B
N (k=1,..N—1).

2k
Im(s)’<—a”Re(s). 9 Rds):—BWCOS(TW), Im(s) =B sin

Proof. Sincep(z)=r[z(z+a)], we have that all nonzero which gives that
roots ofp(z) are inC™ if and only if for all nonzero roots

of r(s) we have that the solutions afz+a)=s are inC™. - 5 o 2K ) 2k
The latter equality can be rewritten as Im(s)?+a® Re(s) = 2 sinf| ——| —a”B| 1-cog —~

a\? a? _ 44 2k L 2k

2+ 5| =s+ =rexgio), (10 =B|1-cos = |1 B| 1+cog
which gives that _aZJ_
=2 ex;{ '_‘9> This gives that Ing)?>+a®Re)<O0 if and only if
2 2/
5 2k
This then gives that we should have that a’>p 1+cog || (k=1..N—-1). (15)
a . a 1+cos#) |12 Now assume that Eq15) holds fork=1. Then we have for
0>——+\/FCOS§6’)=——+ r , k=2,.N—1:
2 2 2 Jees .
ich i i 2k 2k
which is equivalent to 8l 1+co —a2<pl|1+co
N N
a’ 2 2 2k
r(1+cosf)<—. (11) _ kN O T _od 227
2 1+co N Bl co N co N

Write s=x+iy. Then it follows from Eq.(10) that r ((k+D)7\ (k=)
= J(x+a%/4)+y? and r cosf=x+a%4. Thus, Eq.(11) is =-—2Bsin )sm N =0

equivalent to

where the last inequality follows from the fact that flr

2 =2,...N—1 we have that

a 12
X+ —
4

+a2 12

a2
<

+y? 5

7 (k=17 (k+1)7
<—< , <.

Squaring both sides of this equality then gives that @) N N N

is equivalent to
Thus, we have that Eq15) holds for allke {1,...N—1} if

(13) and only if it holds fork=1. It is now straightforwardly
checked that Eq(15) for k=1 is equivalent to Eq(14),

which is exactly the inequality9). This establishes our Which establishes our claim. ,
claim. Remark 2.3Note that folN— o, the left hand side of Eq.

Using Lemma 2.1, we obtain the following result for local (14 tends to 2/"(b). This shows that the condition for sta-
exponential stability of steady-state flows. bility given in Refs.[1], [3] only is a necessary condition for

Theorem 2.2Steady-state flows are locally exponentially N—- Note further that foN=2 the right hand side of Eq.
stable if and only if (14) equals zero. Thus, foN=2 the steady-state flow is

always locally exponentially stable.

y?<—a’x,

2

1+cos( W”V’(b)<a. (149 Ill. CONCLUSIONS

This paper has given a generalized stability criterion for
Proof. From Eq.(8) it follows that the nonzero roots of steady-state flows of road traffic on a circular route. The
r(s) are given by criterion generalizes the well-known result for an infinite
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number of vehicles presented in Rdf$], [3] to finite num-  real motorway traffic models it is often used as a test sce-
bers, and shows that finite-size effect tend to stabilize trafficnario. Moreover, two recent papd4] have shown that the

It is to be noted that the circular route infrastructure is notcircular route infrastructuris of relevance when one consid-
very relevant for real(motorway traffic. However, in ers traffic on bus routes.

[1] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sug- [3] A. D. Mason and A. W. Woods, Phys. Rev55, 2203(1997.
iyama, Phys. Rev. B1, 1035(1995. [4] T. Nagatani, Physica 287, 302 (2000.
[2] H. J. C. Huijberts, Physica &o be publisheg

047103-3



